

HDZ-003-0493006

Seat No. _____

B. Sc. / M. Sc. (Applied Physics) (Sem. III) (CBCS) Examination

November / December - 2017

Paper - XII: Modern Physics - II
(New Course)

Faculty Code: 003 Subject Code: 0493006

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) Numbers in the right margin indicate marks.
- 1 Attempt any seven short questions: (two marks each) 14
 - (1) Write down the basic Postulates of Wave mechanics.
 - (2) What is Heisenberg's Uncertainty Principle?
 - (3) Differentiate between Classical and Quantum Statistics.
 - (4) Define Phase Space and Phase Point.
 - (5) What are Microscopic and Macroscopic systems?
 - (6) Write the Principle of LASER.
 - (7) What are radiative and non-radiative transitions?
 - (8) Describe in brief Stimulated Absorption and Stimulated Emission.
 - (9) Write a short note on π Meson.
 - (10) What are common decay modes of hyperons?
- 2 (a) Write answers of any two: (five marks each) 10
 - (1) Derive the Time dependent Schrodinger's wave equation in 3-D.
 - (2) Derive equations for the Phase Velocity and Group Velocity.
 - (3) Derive an expression for the energy of a particle in an infinite square well potential.
 - (4) Derive the Time independent Schrodinger's wave equation in 3-D.

- (b) Write answer of any **one**: (four marks each) 4
 - (1) Describe various properties of wave function.
 - (2) What is de-Broglie wave? Derive expression for its wavelength.
- 3 (a) Write answers of any two: (five marks each) 10
 - (1) Derive Maxwell's Boltzmann Distribution law of velocities
 - (2) Derive an expression for probability distribution of particles using Fermi Dirac statistics.
 - (3) Write a detailed note on three statistical distribution functions with necessary diagrams.
 - (4) Derive an expression for probability distribution for a Bose-Einstein system of particles.
 - (b) Write answer of any one: (four marks each) 4
 - (1) State and explain the Law of equipartition of Energy.
 - (2) Compare Maxwell -Boltzmann (MB), Bose-Einstein (BE) and Fermi-Dirac (FD) Statistics.
- 4 (a) Write answers of any two: (five marks each) 10
 - (1) Describe the construction and working of RUBY LASER.
 - (2) Write down various characteristics and applications of LASER.
 - (3) Describe the construction and working of He-Ne LASER.
 - (4) What is meant by Population Inversion? Describe different pumping method used in LASER.

- (b) Write answer of any **one**: (four marks each)
 - (1) Derive relations between Einstein's coefficients.
 - (2) Explain Semiconductor LASER with necessary diagram.
- 5 (a) Write answers of any two: (five marks each) 10
 - (1) What are four fundamental interactions in nature?
 - (2) Describe the concept of Lepton and Baryon Conservation.
 - (3) Write a detailed note on Strangeness.
 - (4) Describe in details various mediators of an interaction.
 - (b) Write answer of any one: (four marks each) 4
 - (1) Write a note on Isotopic Spin.
 - (2) Describe the classification of Elementary Particles.

4